
38    Silicon Chip siliconchip.com.auAustralia’s electronics magazine

Arduino started out using 8-bit Atmel AVR micros, but these days, there
are Arduinos based on all sorts of chips. This one happens to use basically
the same device that Geoff Graham used in his 28-pin Micromite series.
As you would expect, it’s very capable, and it can take advantage of most
of the vast range of Arduino software and hardware that’s available.

Introducing the

– a PIC-based Arduino

“Hands on” review by Tim Blythman

The battle between Microchip and Atmel has been
going on for a long time now, with neither side giv-
ing any ground; that is, until Microchip ended the

argument by purchasing Atmel!
Despite that, to this day, we still see a clear line divid-

ing the Atmel AVR-based Arduino boards and PIC-based
boards such as the Micromite.

Even though Microchip took over Atmel in 2016, the
two families remain essentially distinct, although some
features have flowed between the two and you can now
use Microchip’s MPLABX IDE to program some Atmel mi-
crocontrollers.

The chipKIT family blurs this line further, allowing a
PIC32-based microcontroller to be programmed with the
Arduino IDE. The Lenny is only one member of this fam-
ily; there are numerous other chipKIT boards with PIC32
microcontrollers and varying features.

They all sport a 32-bit PIC32 microcontroller, and with
that comes all the advantages of a 32-bit microcontroller
compared to the 8-bit AVRs. And like all PIC32 devices,
they operate from a 3.3V supply, compared to the 5V that’s
typical for AVRs (although AVRs can run from 3.3V too).

To work with the Lenny, you’ll need a copy of the Ardui-
no IDE (integrated development environment), which can
be downloaded for free from: siliconchip.com.au/link/aatq

chipKIT history
The first chipKIT boards were introduced around nine

years ago by a partnership between Microchip Technology

and Digilent. The idea was to create a PIC32-based board
that could use Arduino-compatible add-ons (such as shields
and modules) and also provide a programming experience
for those familiar with the Arduino IDE.

The first boards were known as the chipKIT Uno32 and
Max32, and were intended to be interchangeable with
the Uno and Mega respectively. The Uno32 uses a PIC-
32MX320F128 while the Max32 sports a PIC32MX795F512,
the same processor as the original Maximite (siliconchip.
com.au/Series/30), also from around nine years ago.

Several chipKIT boards have been developed, most using
PIC32MX variants, although a few use the higher-specced
PIC32MZ series.

Hardware compatibility is achieved by using the stand-
ard Arduino header layout, although there is the proviso
that any attached boards must support 3.3V logic levels
and not just 5V.

The PIC32 microcontrollers have a small edge here over
some other 3.3V chips, in that many have some pins which
are 5V tolerant, which simplifies interfacing to other 5V
parts.

Much of the magic is in the software; the compiler and
libraries mean that (for the most part), the same Arduino
sketch code can be used for an ATmega328-based Uno and
a PIC32 based chipKIT board.

The original IDE for working with chipKIT boards was
called the MPIDE (multi-platform IDE) and was forked from
the open-source Arduino IDE. Finally, with support for
non-AVR boards being introduced into the Arduino IDE,

http://siliconchip.com.au/link/aatq
http://siliconchip.com.au/Series/30
http://siliconchip.com.au/Series/30

February 2020   39siliconchip.com.au Australia’s electronics magazine

  Features:
•	 Arduino R3 footprint and layout
•	 32-bit PIC microcontroller (PIC32MX270F256)
•	 Native USB interface
•	 256kB flash memory (244kB usable)
•	 64kB RAM
•	 40MHz processor clock

the chipKIT core for the Arduino was introduced.

So now, chipKIT support can be added to the Arduino
IDE using the Boards Manager, after which the chipKIT
boards appear in the usual list.

The chipKIT Lenny
While many of the early chipKIT boards were produced

by Digilent, the open-source nature of the hardware and
software meant that variants inevitably followed.

A company called Majenko Technologies designed the
Lenny board; they specialise in open-source hardware de-
signs.

We could have reviewed any of the chipKIT variants, but
we chose the Lenny because it’s one of the cheaper chip-
KIT boards available. It also appears to be well designed
regarding Arduino compatibility. In particular, it follows
the R3 layout. It has dedicated pins for I2C and SPI in the
correct places, as well as secondary I2C and SPI connec-
tions where you would find them on the Uno.

So it has the best chance of working with shields, even
if they date back to the days when the Uno was the only
option.

It uses a PIC32MX270F256D micro. We used the DIP
variant of this chip in our February 2019 USB Adaptor for
Micros (siliconchip.com.au/Article/11414). Its immediate
predecessor, the PIC32MX250F256B, was also used in the
ASCII Video Terminal project from July 2014 (siliconchip.
com.au/Article/7925).

These chips have an onboard USB peripheral. In this
case, it is used for direct communication with the host PC,
similarly to the Arduino Leonardo. And it’s the Leonardo
which is the inspiration for the Lenny design and name,
in case you hadn’t guessed.

The hardware
Fig.1 shows the schematic of the Lenny. As it is open-

source hardware, all the design files (such as PCB files)
are available online via siliconchip.com.au/link/aaxi

The DC jack, CON1, supplies up to 12V to
5V LD1117S50T regulator REG1 via schottky
diode D1. Alternatively, REG1 can be supplied
directly from the VIN pin. The 5V rail powers
3.3V MCP1825S-3302 regulator REG2.

The LD1117S50T regulator can handle up to
15V, but the Lenny manual notes an absolute

maximum of 12V. Since 12V automotive systems
can easily reach above 14V, this reduces the board’s

apparent usefulness.
IC2, an op amp configured as a comparator, con-

trols Q1 to connect the 5V from the USB socket un-
less power is available from VIN. This part of the cir-

cuit is virtually identical to that used in the reference
Uno R3 design.

An 8MHz clock is provided by clock oscillator XO1 and
fed into the OSC1 pin of the PIC32MX270F256D, IC1. The
pins of IC1 are broken out to the various headers around
the board, as well as to the micro-USB socket, CON3.

There are two tactile push-buttons on the board. S1 is
marked PROG and is used to activate the bootloader for up-
loading sketches, while S2 is used to reset the microcontroller.

Near the USB socket is the ICSP header (CON9) with stag-
gered pins to allow a header to be friction-fitted temporar-
ily. The ICSP header is not needed during regular opera-
tion, but can be used to program the PIC32 microcontroller
directly or to update the bootloader firmware.

There are four LEDs onboard. Two indicate serial data
activity (TX and RX), one is for power and one flashes
during programming, and can be used for other tasks in
your own code.

The usual array of bypass capacitors surround the micro-
controller. While the board is sparse, the simplicity lends
itself to the possibility of being the basis of other PIC32-
based designs.

Table 1 shows the capabilities of each pin that’s broken
out to one of the usual Arduino headers.

Software
As mentioned above, to use the Lenny with the Ardui-

no IDE, we need to install the chipKIT core. This contains
several parts, but they are all installed as a single unit.

It includes a series of board definitions, which ensure
that the pins marked on the board are correctly associated
with the physical pins on each specific microcontroller.

It also includes a C++ compiler. Like the AVR Arduino
core, it is based on the open-source gcc (GNU Compiler
Collection). This turns the Arduino-flavoured C++ code
into PIC32-specific machine code.

There are also libraries which translate the common
Arduino-specific functions into code which correctly in-
terfaces with the peripherals on a PIC32 microcontroller.
This includes such simple functions as digitalWrite() and
analogRead(), as well as things like the SPI and I2C inter-
faces.

There are also utilities to upload the sketch to the board;
in the Lenny’s case, this is pic32prog, the same program
that can be used to program some variants of the Micromite.

We’re using version 1.8.5 of the Arduino IDE. To program
the Lenny, you need an IDE new enough to include the Boards
Manager, which was first included with version 1.6.7, but

http://siliconchip.com.au
http://siliconchip.com.au/Article/11414
http://siliconchip.com.au/Article/7925
http://siliconchip.com.au/Article/7925
http://siliconchip.com.au/link/aaxi

40    Silicon Chip siliconchip.com.auAustralia’s electronics magazine

we haven’t tried it with a version that early; it may work.
We’re using Windows 10, but the same process should work

for macOS, Linux (x86 and x64) and even a Raspberry Pi.

Board installation
Firstly, open the Preferences window (File -> Preferenc-

es) and add the following URL to the Additional Boards
Manager URL list:

https://raw.githubusercontent.com/chipKIT32/chipKIT-
core/master/package_chipkit_index.json

G
S

D

1

1

2

2

3

3

4

4

5

5

6

IC1
PIC3 MX270-

F256D
2
IC1

PIC32MX270-
F256D

1

2

3

4

5

6

7

9

10

11

12

13

14

15

16

17

RC1

RB1/MISO1

RB13/MOSI1

RB8/SCL1

RB9 A1/SD

MCLR

VCAP

AN8/RC2

AN6/RC0

RC3

RC5

RA3

RA8/TDO

PROG/RB4/SOSCI

MISO2/RA SOSCO4/

MOSI2/RA9/TDI

AVSS VSS VSSVSS

18

19

20

21

22

23

24

25

26

27

AN4/RB2

AN5/RB3

RC7

RB5

RC4

RC6

RB7
RA7/TCK

RA10/TMS

USB D–/RB11/PGEC2

USB D+/RB10/PGED2

RB14/SCK1

SCK2/RB15

VBUS

AN1 RA1/

AN2 RB0/

AN0/RA0

CLK / AI R 2

RC9

RC8

VDD VDDAVDD

VUSB3V3

8

41

42

43

44

28

29

30

31

32

33

34

35

36

37

38

39

401
2
3

4
X

1
2

3
4

5
6

LED0 LED1 LED2

CLK

CON6

CON5

2020
SC

�

10 F�

1 2

3

4

8
XO
MHz

1
8
XO
MHz

1
OUT

VDD

E GND

GND GND

IN OUT
1

2

3

4

REG1 LD1117S50TR

1

23

4

VIN

GND

VOUT

VOUT

CON1
D1

10 F� 10 F� 1 F� 1 F�

A

A

A A A A

K

K

K K K K

REG2 MCP1825S-3302
VIN Vcc (+5V) Vdd (+3.3V)

10k�

10k�

10k� 10k�

Q1 IC2IC2

D2

L1

L2

100nF 100nF 100nF

100nF

100nF

S2
RESETLK1

FAST
PROG

SCL1

SDA1

AREF

GND

SCK1

MISO1

MOSI1

D10

D9

D8

D7

D6

D5

D4

D3

D2

D1

D0

F1 500mACON3

1M�

+5V

+5V

+3.3V

+3.3V

CON2
PROG

+3.3V

+3.3V

+3.3V

RESET

+3.3V

VIN

GND

GND

+5V

A0

A0

A1

A2

A3

A4

A5

CON4

S1

RESET

RESET

CON8

CON9

AREF

4x
1k�

� � �
PWR
LED �

IC2: MCP6001T

CHIPKIT LENNY

PROG

Fig.1: there isn’t much to the Lenny circuit. The main microcontroller handles the
USB interface, so there is no need for an interface IC. The remainder of the circuit
is mostly involved with power supply and voltage regulation.

Separate this from any existing entries with a comma.
Now open the Boards Manager from Tools -> Board ->

Boards Manager. It may take a few moments for the list
to be populated, as each URL is checked. Unfortunately,
you cannot remove URLs after the boards are installed,
as this makes them unavailable from the IDE. We under-
stand this behaviour may change in future versions of the
Arduino IDE.

The chipKIT option should appear, as shown in Screen1,
so click the Install button. Installation may take a while as

https://raw.githubusercontent.com/chipKIT32/chipKIT-core/master/package_chipkit_index.json
https://raw.githubusercontent.com/chipKIT32/chipKIT-core/master/package_chipkit_index.json

February 2020   41siliconchip.com.au Australia’s electronics magazine

there are the various board definitions and compilation and
upload tools to be installed. The total size is around 1GB.

Note that the Lenny board doesn’t appear in the list on
this screen, but it is supported by version 2.1.0 of the chip-
KIT core, as shown in Screen2.

Using it
We found that there are a few quirks when using the Len-

ny compared to a typical AVR board like the Uno. These are
apart from obvious differences such as the 3.3V I/O voltage.

The first is the “PROG” button. The Lenny needs to be
manually put into programming mode by pushing the PROG
button, which isn’t necessary on the Uno. This is because
the onboard USB interface is shared between the program-
ming interface and user programs. If you don’t press this
button before initiating a code upload, that upload will fail.

The PROG button can be a little awkward to access if a
shield is fitted to the top of the Lenny. We were just able
to get a finger into the gap, but we imagine some people
might struggle with this. Also, note that this means that
the serial port number (COMx) changes between program-
ming mode and run mode.

This happens with the AVR-based Leonardo too, but the
upload utility detects it, so it works seamlessly, and there
is no need to change the serial port manually.

The Lenny software does not do this, so to work with
a program that uses the serial port (especially for debug-
ging), the serial port has to be changed twice for each pro-
gram upload.

Pin	 Features
D0.....................5V tolerant digital I/O, serial RX
D1.....................5V tolerant digital I/O, serial TX
D2.....................5V tolerant digital I/O, serial1 TX, interrupt
D3.....................5V tolerant digital I/O, PWM, interrupt
D4.....................5V tolerant digital I/O, serial1 RX, interrupt
D5.....................5V tolerant digital I/O, PWM, interrupt
D6.....................5V tolerant digital I/O, PWM, interrupt
D7.....................3.3V digital I/O
D8.....................5V tolerant digital I/O
D9.....................PWM
D10...................PWM
D11...................SPI MOSI
D12...................SPI MISO
D13...................SPI SCK
SDA...................5V tolerant digital I/O
SCL...................5V tolerant digital I/O
A0......................analog or 3.3V digital I/O
A1......................analog or 3.3V digital I/O
A2......................analog or 3.3V digital I/O
A3......................analog or 3.3V digital I/O
A4......................analog, 3.3V digital I/O or I2C SDA
A5......................analog, 3.3V digital I/O or I2C SCL
ICSP SCK..........3.3V digital I/O
ICSP MOSI........5V tolerant I/O
ICSP MISO........3.3V digital I/O

Table 1 - Lenny pin capabilities

The way we sidestepped this is to use another serial
terminal program, specifically, TeraTerm. TeraTerm has
the advantage that it can resume communication even if
a serial port disconnects while the terminal is open, as is
the case when the Lenny switches to programming mode.

The TeraTerm window can simply stay open in the back-
ground. It operates a bit differently to the Arduino Seri-
al Monitor, but it’s perfectly adequate for most purposes.

Benchmarking
We decided to run some benchmarks on the Lenny, to

compare its performance to other Arduino boards – see
Table 2. We used the same method as in our review of the
new Arduino Nano boards in October 2019 (siliconchip.
com.au/Article/12015).

Since one of those boards, the Nano 33 IoT, also has a
32-bit chip (an Atmel SAMD21), this makes a good com-
parison for the Lenny.

The benchmark tests show the Lenny to be by far the
fastest overall. Note that the Lenny runs at 40MHz while
the Nano 33 IoT runs at 48MHz. The Nano 33 IoT is ahead
by a tiny margin when doing byte, integer and long mul-
tiplies, but otherwise, the Lenny comes out firmly on top.

There are vague mentions of a 50MHz bootloader con-
figuration for the Lenny, which we imagine would put it
even further ahead. But the PIC on our Lenny is the 40MHz
variant, so this upgrade is a bit dubious; it may work, but
perhaps not reliably.

Compatibility
We don’t expect that the Lenny will be immediately

compatible with all Arduino sketches, in particular, those
which use direct port writes. When such techniques are
used, those sketches will only work on the specific board
they are written for, which is typically the Uno.

To test this, we tried compiling a few different sketches
written for different shields.

The first one we tried was for the Jaycar XC4454 LCD
Shield. This uses the common HD44780-type LCD control-
ler and is supported by the ‘LiquidCrystal’ library, which
is usually included with the Arduino IDE.

Once we had the pins set correctly (the Jaycar shield
uses a different pin configuration to the default), the sketch
worked as expected. Since this shield uses one-way com-
munication, it depends on the LCD controller accepting
3.3V logic levels, which it appears to do.

The next test was one of our own shields, the 3.5in Touch-
screen Arduino Adapter from May 2019 (siliconchip.com.
au/Article/11629). We found that the display worked fine,
even with the level converting resistors in place.

The level-converting resistors are intended to allow 5V
I/O signals to drive the 3.3V controller on the LCD, but in
this case the 3.3V I/O is being divided down to 2.2V lev-
els. So, it’s remarkable that it worked!

The touch controller did not fare so well; we could not
get it to work, even modifying the level-converting resis-
tors to deliver 3.3V I/O signals (by removing the lower re-
sistors from the dividers). We could not resolve this issue,
but expect that there is some way to make it work. After
all, the same display works perfectly well with the practi-
cally identical PIC32MX170F256 chip in the Micromite.

We suspect that this has to do with the different ways
that SPI interfaces are handled, particularly as the touch

http://siliconchip.com.au
http://siliconchip.com.au/Article/12015
http://siliconchip.com.au/Article/12015
http://siliconchip.com.au/Article/11629
http://siliconchip.com.au/Article/11629

42    Silicon Chip siliconchip.com.auAustralia’s electronics magazine

controller IC on the 3.5in panels works at a much lower
maximum bus speed than the LCD.

We also tried our updated Seismograph shield from
April 2019 (siliconchip.com.au/Article/11532). Amongst
the other hardware, the main shield used has an SD card
interface that uses the SPI peripheral and a real-time clock
(RTC) module that uses the I2C peripheral.

This project did not compile immediately, as we used a
specific format of an I2C command that had not been im-
plemented in the chipKIT core.

This format (where a third argument is presented in the
requestFrom() function call) is docu-
mented in the official Arduino reference.
Further investigation shows that this is-
sue has been identified but not fixed in
the chipKIT core (see https://github.com/
chipKIT32/chipKIT-core/issues/240).

The specific SD card file system library
we used in this project was not able to
read the SD card either. We also tried
an example SD card sketch (CardInfo)
from the Arduino IDE, and this was able
to correctly identify the card and list its
contents.

So it appears there are some minor
differences between the AVR and chip-
KIT libraries.

PWM support
You might have also noticed from Ta-

ble 1 that the Lenny only has five hard-
ware PWM pins, compared to the Uno’s

six; pin D11 is the one that is miss-
ing this feature. Fortunately, the ex-
tra speed of the PIC32 microcontrol-
ler means that software-based PWM
is available and can perform this task
instead.

The ‘SoftPWMServo’ library uses
the core timer to generate PWM signals
(and servo signals) on pins that do not
have hardware PWM support. The li-
brary notes that it may be subject to ap-
proximately 50ns of jitter in the output.

This equates to around 1% of the
pulse width resolution, so is unlikely
to be noticeable for most applications.

Special features
While browsing through the list of

included examples, we noticed a folder
called “USB_MSD”. Inside, there are
two example sketches which program
the Lenny board to behave as though it
is a USB Mass Storage Device.

At first, we could not get either of
the examples to compile, but by add-
ing two lines (and commenting a third
out), we got the sketch “AnalogToFile”
to compile and upload. These changes
are shown in Screen3.

Once uploaded, the Lenny was vis-
ible to the attached computer as a USB
Mass Storage Device. After formatting

it, we were able to copy files to it. There was only 26kB of
space available, as the contents are held in a 48kB RAM
buffer. The “AnalogToFile” sketch also creates a file in this
file system, which can be read by the USB host computer.

Being able to program a board to emulate a USB stick that
can modify its own contents is very interesting. Previous-
ly, to copy log files from an Arduino project, you needed
an SD card or a clunky custom interface, such as copying
data from a serial terminal.

Now, using the Lenny, you can simply get the board to

Screen1: once the chipKIT URL has been added to the preferences page, the
chipKIT core can be selected from the Boards Manager. Though the Lenny is
not in this list, its profile is installed.

	 Nano	 Nano    Every	Nano33 IoT  chipKIT Lenny
digitalRead	 5.032µs	 6.679µs	 0.948µs		 0.804µs
digitalWrite	 4.532µs	 6.459µs	 1.913µs		 1.066µs
pinMode	 4.470µs	 3.244µs	 1.931µs		 1.644µs
byte *	 0.632µs	 0.570µs	 0.197µs		 0.199µs
byte /	 5.412µs	 5.297µs	 0.636µs		 0.451µs
byte +	 0.443µs	 0.381µs	 0.197µs		 0.149µs
integer *	 1.386µs	 1.263µs	 0.171µs		 0.174µs
integer /	 14.277µs	 14.052µs	 0.591µs		 0.396µs
integer +	 0.883µs	 0.759µs	 0.171µs		 0.124µs
long *	 6.102µs	 5.547µs	 0.168µs		 0.174µs
long /	 38.662µs	 38.362µs	 0.596µs		 0.396µs
long +	 1.763µs	 1.514µs	 0.169µs		 0.124µs
float *	 7.932µs	 7.314µs	 3.016µs		 1.329µs
float /	 80.162µs	 78.337µs	 11.721µs		 4.296µs
float +	 10.107µs	 9.692µs	 2.806µs		 1.276µs
itoa()	 12.957µs	 12.792µs	 3.041µs		 0.876µs
ltoa()	 125.987µs	 125.487µs	 16.196µs		 2.696µs
dtostrf()	 78.637µs	 76.687µs			  46.896µs
random()	 91.412µs	 90.512µs	 9.546µs		 2.121µs
y|=(1<<x)	 0.569µs	 0.444µs			  0.099µs
bitSet()	 0.569µs	 0.444µs	 0.123µs		 0.099µs
analogRead()	 111.987µs	 112.887µs	 422.946µs		 21.046µs
analogWrite()	 7.167µs	 6.932µs	 6.801µs		 1.401µs

Table 2 - chipKIT Lenny benchmark (lower is better)

http://siliconchip.com.au/Article/11532
https://github.com/chipKIT32/chipKIT-core/issues/240
https://github.com/chipKIT32/chipKIT-core/issues/240

February 2020   43siliconchip.com.au Australia’s electronics magazine

generate its log file to the internal RAM image and then it
can be easily copied and pasted via a file browser program.

We haven’t looked into this too deep-
ly, but there is probably a way to attach
to an SD card and just use the Lenny
as a card reader that can also write to
itself. While it is a limited and simple
interface, we think there are many po-
tential uses for it.

Other USB features
Some other USB-equipped boards

like the Leonardo can emulate a key-
board or mouse. We used such a board
(called a ‘Beetle’) in our project from
August 2018 to interface an IR remote
control to a computer by emulating
a keyboard (siliconchip.com.au/Arti-
cle/11195).

We tried the keyboard and mouse ex-
amples that are available for the Len-
ny, and they performed as expected,
although we could not get an infrared
interface working, as the IR library uses
AVR-specific interrupt code to receive
the signal.

The overall impression here is that
most things will work, but you need

to set aside some time to work through the minor niggles
which pop up. The chipKIT core files are common to all
chipKIT boards; thus, it would be a similar process to get
such shields working with any chipKIT board. But unfor-
tunately, some libraries depend on AVR-specific features,
so they cannot be made to work easily.

The Lenny verdict
We’re impressed with

the speed of the Lenny
board, as shown in the
benchmarks. The 32-bit
processor is much fast-
er at mathematically-in-
tensive programs than an
8-bit processor, and gen-
erally quicker than other
32-bit boards such as the
Nano 33 IoT.

The extra speed also means that software PWM on all
pins is possible. While not as accurate as hardware PWM,
it is certainly adequate for most purposes.

The writers of the chipKIT core have worked hard to
make it compatible with other Arduinos, but there are still
some gaps present in important libraries. So it is not al-
ways a trivial process to port existing projects from 8-bit
AVR-based boards to the Lenny.

The ability of the Lenny to behave as a USB Mass Stor-
age Device is really powerful, since it is such an intuitive
way to move files around.

Overall, the Lenny is a great board, but perhaps not ca-
pable of being a drop-in substitute for AVR-based boards.
We expect that it will be best used in applications where
its specific features would be a benefit over other boards,
rather than as an upgrade in existing applications.

In particular, we expect to see projects spring up around
USB Mass Storage Device examples.

Screen2: the full list of available
chipKIT boards can be seen after the
chipKIT core is installed. While they
have diverse names, all are based
around PIC32 microcontrollers.

Screen3: the “USB_MSD” examples show off what we think is one of the Lenny’s
most interesting feature, being able to act as a USB Mass Storage Device. We needed
to make some minor changes to the code to get it to compile, which are shown here.

SC

http://siliconchip.com.au
http://siliconchip.com.au/Article/11195
http://siliconchip.com.au/Article/11195

